DataStore предоставляет комплексные инструменты отладки для анализа и оптимизации ваших конвейеров данных.
Обзор инструментов отладки
| Инструмент | Назначение | Когда использовать |
|---|
explain() | Просмотр плана выполнения | Понять, какой SQL‑запрос будет выполнен |
| Profiler | Измерение производительности | Найти медленные операции |
| Logging | Просмотр деталей выполнения | Отладка неожиданного поведения |
Быстрая матрица решений
| Задача | Инструмент | Команда |
|---|
| Посмотреть план выполнения | explain() | ds.explain() |
| Измерить производительность | Profiler | config.enable_profiling() |
| Отладить SQL‑запросы | Logging | config.enable_debug() |
| Всё вышеперечисленное | Комбинированный подход | См. ниже |
Быстрый запуск
Включить полную отладку
from chdb import datastore as pd
from chdb.datastore.config import config
# Enable all debugging
config.enable_debug() # Verbose logging
config.enable_profiling() # Performance tracking
ds = pd.read_csv("data.csv")
result = ds.filter(ds['age'] > 25).groupby('city').agg({'salary': 'mean'})
# View execution plan
result.explain()
# Get profiler report
from chdb.datastore.config import get_profiler
profiler = get_profiler()
profiler.report()
Метод explain()
Просмотрите план выполнения перед запуском запроса.
ds = pd.read_csv("data.csv")
query = (ds
.filter(ds['amount'] > 1000)
.groupby('region')
.agg({'amount': ['sum', 'mean']})
)
# View plan
query.explain()
Вывод:
Pipeline:
Source: file('data.csv', 'CSVWithNames')
Filter: amount > 1000
GroupBy: region
Aggregate: sum(amount), avg(amount)
Generated SQL:
SELECT region, SUM(amount) AS sum, AVG(amount) AS mean
FROM file('data.csv', 'CSVWithNames')
WHERE amount > 1000
GROUP BY region
Подробности см. в документации по explain().
Профилирование
Измеряйте время выполнения каждой операции.
from chdb.datastore.config import config, get_profiler
# Enable profiling
config.enable_profiling()
# Run operations
ds = pd.read_csv("large_data.csv")
result = (ds
.filter(ds['amount'] > 100)
.groupby('category')
.agg({'amount': 'sum'})
.sort('sum', ascending=False)
.head(10)
.to_df()
)
# View report
profiler = get_profiler()
profiler.report(min_duration_ms=0.1)
Вывод:
Performance Report
==================
Step Duration Calls
---- -------- -----
read_csv 1.234s 1
filter 0.002s 1
groupby 0.001s 1
agg 0.089s 1
sort 0.045s 1
head 0.001s 1
to_df (SQL execution) 0.567s 1
---- -------- -----
Total 1.939s 7
См. руководство по профилированию для получения подробной информации.
Логирование
Просматривайте подробные логи выполнения.
from chdb.datastore.config import config
# Enable debug logging
config.enable_debug()
# Run operations - logs will show:
# - SQL queries generated
# - Execution engine used
# - Cache hits/misses
# - Timing information
Пример вывода логов:
DEBUG - DataStore: Creating from file 'data.csv'
DEBUG - Query: SELECT region, SUM(amount) FROM ... WHERE amount > 1000 GROUP BY region
DEBUG - Engine: Using chdb for aggregation
DEBUG - Execution time: 0.089s
DEBUG - Cache: Storing result (key: abc123)
Подробности см. в разделе Logging Configuration.
Типичные сценарии отладки
1. Запрос не возвращает ожидаемые результаты
# Step 1: View the execution plan
query = ds.filter(ds['age'] > 25).groupby('city').sum()
query.explain(verbose=True)
# Step 2: Enable logging to see SQL
config.enable_debug()
# Step 3: Run and check logs
result = query.to_df()
2. Медленное выполнение запроса
# Step 1: Enable profiling
config.enable_profiling()
# Step 2: Run your query
result = process_data()
# Step 3: Check profiler report
profiler = get_profiler()
profiler.report()
# Step 4: Identify slow operations and optimize
3. Принципы выбора движка
# Enable verbose logging
config.enable_debug()
# Run operations
result = ds.filter(ds['x'] > 10).apply(custom_func)
# Logs will show which engine was used for each operation:
# DEBUG - filter: Using chdb engine
# DEBUG - apply: Using pandas engine (custom function)
4. Отладка проблем с кэшем
# Enable debug to see cache operations
config.enable_debug()
# First run
result1 = ds.filter(ds['x'] > 10).to_df()
# LOG: Cache miss, executing query
# Second run (should use cache)
result2 = ds.filter(ds['x'] > 10).to_df()
# LOG: Cache hit, returning cached result
# If not caching when expected, check:
# - Are operations identical?
# - Is cache enabled? config.cache_enabled
Лучшие практики
1. Отлаживайте в среде разработки, а не в продакшене
# Development
config.enable_debug()
config.enable_profiling()
# Production
config.set_log_level(logging.WARNING)
config.set_profiling_enabled(False)
2. Перед выполнением крупных запросов используйте explain()
# Build query
query = ds.filter(...).groupby(...).agg(...)
# Check plan first
query.explain()
# If plan looks good, execute
result = query.to_df()
3. Сначала профилируйте, потом оптимизируйте
# Don't guess what's slow - measure it
config.enable_profiling()
result = your_pipeline()
get_profiler().report()
4. Проверьте SQL‑запрос, если результаты неверны
# View generated SQL
print(query.to_sql())
# Compare with expected SQL
# Run SQL directly in ClickHouse to verify
Сводка инструментов отладки
| Инструмент | Команда | Результат |
|---|
| План выполнения | ds.explain() | Шаги выполнения + SQL |
| Подробный план выполнения | ds.explain(verbose=True) | + Метаданные |
| Просмотр SQL | ds.to_sql() | Строка SQL-запроса |
| Включить отладку | config.enable_debug() | Детализированные логи |
| Включить профилирование | config.enable_profiling() | Данные о времени выполнения |
| Отчет профилировщика | get_profiler().report() | Сводка по производительности |
| Очистить профилировщик | get_profiler().reset() | Очистка данных о времени выполнения |
Дальнейшие шаги